Welcome!

CRM Authors: Xenia von Wedel, Ian Khan, PR.com Newswire, Steve Mordue

Related Topics: @ThingsExpo, Machine Learning , Artificial Intelligence

@ThingsExpo: Article

How Is Apple Using Machine Learning? | @ThingsExpo #AI #ML #DL #DX #IoT

Today, machine learning is found in almost every product and service by Apple

Today, machine learning is found in almost every product and service by Apple. They use deep learning to extend battery life between charges on their devices and detect fraud on the Apple store, recognize the locations and faces in your photos, and help Apple choose news stories for you.

The concept of AI (Artificial Intelligence) has been the subject of many discussions lately. According to some predictions, AI will have the ability to learn by itself, outclassing the capabilities of the human brain, and even manage to fight for equal rights by the year 2100. Even though these are (still) just speculations and predictions, companies like Apple are developing and implementing machine learning technology, which is still in its infancy. How is Apple using machine learning?

Apple's beginnings with deep learning technologies
Let's start with Apple's beginnings with using AI. It was during the 1990s, when the company was using certain machine learning techniques in its products with handwriting recognition. This machine learning techniques were, of course, much more primitive.

Today, machine learning is found in almost every product and service by Apple. They use deep learning to extend battery life between charges on their devices and detect fraud on the Apple store, recognize the locations and faces in your photos, and help Apple choose news stories for you. Machine learning determines whether the owners of Apple Watch cloud are really exercising or just perambulating. It figures out whether you'd be better off switching to the cell network due to a weak Wi-Fi signal.

Apple's smart assistant
In 2011, Apple integrated a smart assistant into its operating system, and was the first tech giant to pull it off. The name of that smart assistant is Siri, and it was an adaptation of a standalone app that Apple had purchased (along with the app's developing team). Siri had ‘exploded', with ecstatic initial reviews. However, over the next few years, users wanted to see Apple deal with Siri's shortcomings. Thus, Siri got a ‘brain transplant' in 2014.

Siri's voice recognition was moved to a neural-net based system. The system began leveraging machine learning techniques, including DNN (deep neural networks), long short-term memory units, convolutional neural networks, n-grams, and gate recurrent units. Siri was operational with deep learning, while it still looked the same.

Every iPhone user has come across Apple's AI, for example, when you swipe on your device screen to get a shortlist of all the apps that you're most likely to open next, or when it identifies a caller who's not memorized in your contact list. Whenever a map location pops out for the accommodation you've reserved, or when you get reminded of an appointment that you forgot to put into your calendar. Apple's neural-network trained system watches as you type, detecting items and key events like appointments, contacts, and flight information. The information is not collected by the company, but stays on your iPhone and in cloud-based storage backups - the information is filtered so it can't be inferred. All this is made possible by Apple's adoption of neural nets and deep learning.

During this year's WWDC, Apple presented how machine learning is used by a new Siri-powered watch face to customize its content in real-time, including news, traffic information, reminders, upcoming meetings, etc., when they are supposed to be most relevant.

Making mobile AI faster with new machine learning API
Apple wants to make the AI on your iPhone as powerful and fast as possible. A week ago, the company unveiled a new machine learning API, named Core ML. The most important benefit of Core ML will be faster responsiveness of the AI when executing on the Apple Watch, iPad, and iPhone. What would this cover? Well, everything from face recognition to text analysis, with an effect of a wide range of apps.

The essential machine learning tools that the new Core ML will support include neural networks (deep, convolutional, and recurrent), tree ensembles, and linear models. As for privacy, the data that's used for improving user experience won't leave the users' tablets and phones.

The announcement of making AI work better on mobile devices became an industry-wide trend, meaning that other companies might be trying that as well. As for Apple, it's clear that deep learning technology has changed their products. However, it's not clear whether it's changing the company itself. Apple carefully controls the user experience, with everything being precisely coded and pre-designed. However, engineers must take a step back (when using machine learning) and let the software discover solutions by itself. Will machine learning systems have a hand in product design, if Apple manages to adjust to the modern reality?

More Stories By Nate Vickery

Nate M. Vickery is a business consultant from Sydney, Australia. He has a degree in marketing and almost a decade of experience in company management through latest technology trends. Nate is also the editor-in-chief at bizzmarkblog.com.

@ThingsExpo Stories
It is of utmost importance for the future success of WebRTC to ensure that interoperability is operational between web browsers and any WebRTC-compliant client. To be guaranteed as operational and effective, interoperability must be tested extensively by establishing WebRTC data and media connections between different web browsers running on different devices and operating systems. In his session at WebRTC Summit at @ThingsExpo, Dr. Alex Gouaillard, CEO and Founder of CoSMo Software, presented ...
DXWorldEXPO LLC, the producer of the world's most influential technology conferences and trade shows has announced the 22nd International CloudEXPO | DXWorldEXPO "Early Bird Registration" is now open. Register for Full Conference "Gold Pass" ▸ Here (Expo Hall ▸ Here)
Amazon started as an online bookseller 20 years ago. Since then, it has evolved into a technology juggernaut that has disrupted multiple markets and industries and touches many aspects of our lives. It is a relentless technology and business model innovator driving disruption throughout numerous ecosystems. Amazon’s AWS revenues alone are approaching $16B a year making it one of the largest IT companies in the world. With dominant offerings in Cloud, IoT, eCommerce, Big Data, AI, Digital Assista...
Recently, REAN Cloud built a digital concierge for a North Carolina hospital that had observed that most patient call button questions were repetitive. In addition, the paper-based process used to measure patient health metrics was laborious, not in real-time and sometimes error-prone. In their session at 21st Cloud Expo, Sean Finnerty, Executive Director, Practice Lead, Health Care & Life Science at REAN Cloud, and Dr. S.P.T. Krishnan, Principal Architect at REAN Cloud, discussed how they built...
As ridesharing competitors and enhanced services increase, notable changes are occurring in the transportation model. Despite the cost-effective means and flexibility of ridesharing, both drivers and users will need to be aware of the connected environment and how it will impact the ridesharing experience. In his session at @ThingsExpo, Timothy Evavold, Executive Director Automotive at Covisint, discussed key challenges and solutions to powering a ride sharing and/or multimodal model in the age ...
When shopping for a new data processing platform for IoT solutions, many development teams want to be able to test-drive options before making a choice. Yet when evaluating an IoT solution, it’s simply not feasible to do so at scale with physical devices. Building a sensor simulator is the next best choice; however, generating a realistic simulation at very high TPS with ease of configurability is a formidable challenge. When dealing with multiple application or transport protocols, you would be...
Data is the fuel that drives the machine learning algorithmic engines and ultimately provides the business value. In his session at Cloud Expo, Ed Featherston, a director and senior enterprise architect at Collaborative Consulting, discussed the key considerations around quality, volume, timeliness, and pedigree that must be dealt with in order to properly fuel that engine.
Detecting internal user threats in the Big Data eco-system is challenging and cumbersome. Many organizations monitor internal usage of the Big Data eco-system using a set of alerts. This is not a scalable process given the increase in the number of alerts with the accelerating growth in data volume and user base. Organizations are increasingly leveraging machine learning to monitor only those data elements that are sensitive and critical, autonomously establish monitoring policies, and to detect...
In his session at @ThingsExpo, Dr. Robert Cohen, an economist and senior fellow at the Economic Strategy Institute, presented the findings of a series of six detailed case studies of how large corporations are implementing IoT. The session explored how IoT has improved their economic performance, had major impacts on business models and resulted in impressive ROIs. The companies covered span manufacturing and services firms. He also explored servicification, how manufacturing firms shift from se...
IoT solutions exploit operational data generated by Internet-connected smart “things” for the purpose of gaining operational insight and producing “better outcomes” (for example, create new business models, eliminate unscheduled maintenance, etc.). The explosive proliferation of IoT solutions will result in an exponential growth in the volume of IoT data, precipitating significant Information Governance issues: who owns the IoT data, what are the rights/duties of IoT solutions adopters towards t...
In his keynote at 18th Cloud Expo, Andrew Keys, Co-Founder of ConsenSys Enterprise, provided an overview of the evolution of the Internet and the Database and the future of their combination – the Blockchain. Andrew Keys is Co-Founder of ConsenSys Enterprise. He comes to ConsenSys Enterprise with capital markets, technology and entrepreneurial experience. Previously, he worked for UBS investment bank in equities analysis. Later, he was responsible for the creation and distribution of life settl...
With tough new regulations coming to Europe on data privacy in May 2018, Calligo will explain why in reality the effect is global and transforms how you consider critical data. EU GDPR fundamentally rewrites the rules for cloud, Big Data and IoT. In his session at 21st Cloud Expo, Adam Ryan, Vice President and General Manager EMEA at Calligo, examined the regulations and provided insight on how it affects technology, challenges the established rules and will usher in new levels of diligence arou...
Organizations planning enterprise data center consolidation and modernization projects are faced with a challenging, costly reality. Requirements to deploy modern, cloud-native applications simultaneously with traditional client/server applications are almost impossible to achieve with hardware-centric enterprise infrastructure. Compute and network infrastructure are fast moving down a software-defined path, but storage has been a laggard. Until now.
Dion Hinchcliffe is an internationally recognized digital expert, bestselling book author, frequent keynote speaker, analyst, futurist, and transformation expert based in Washington, DC. He is currently Chief Strategy Officer at the industry-leading digital strategy and online community solutions firm, 7Summits.
Digital Transformation is much more than a buzzword. The radical shift to digital mechanisms for almost every process is evident across all industries and verticals. This is often especially true in financial services, where the legacy environment is many times unable to keep up with the rapidly shifting demands of the consumer. The constant pressure to provide complete, omnichannel delivery of customer-facing solutions to meet both regulatory and customer demands is putting enormous pressure on...
IoT is at the core or many Digital Transformation initiatives with the goal of re-inventing a company's business model. We all agree that collecting relevant IoT data will result in massive amounts of data needing to be stored. However, with the rapid development of IoT devices and ongoing business model transformation, we are not able to predict the volume and growth of IoT data. And with the lack of IoT history, traditional methods of IT and infrastructure planning based on the past do not app...
"Akvelon is a software development company and we also provide consultancy services to folks who are looking to scale or accelerate their engineering roadmaps," explained Jeremiah Mothersell, Marketing Manager at Akvelon, in this SYS-CON.tv interview at 21st Cloud Expo, held Oct 31 – Nov 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA.
More and more brands have jumped on the IoT bandwagon. We have an excess of wearables – activity trackers, smartwatches, smart glasses and sneakers, and more that track seemingly endless datapoints. However, most consumers have no idea what “IoT” means. Creating more wearables that track data shouldn't be the aim of brands; delivering meaningful, tangible relevance to their users should be. We're in a period in which the IoT pendulum is still swinging. Initially, it swung toward "smart for smart...
IoT is rapidly becoming mainstream as more and more investments are made into the platforms and technology. As this movement continues to expand and gain momentum it creates a massive wall of noise that can be difficult to sift through. Unfortunately, this inevitably makes IoT less approachable for people to get started with and can hamper efforts to integrate this key technology into your own portfolio. There are so many connected products already in place today with many hundreds more on the h...
Here are the Top 20 Twitter Influencers of the month as determined by the Kcore algorithm, in a range of current topics of interest from #IoT to #DeepLearning. To run a real-time search of a given term in our website and see the current top influencers, click on the topic name. Among the top 20 IoT influencers, ThingsEXPO ranked #14 and CloudEXPO ranked #17.